Copyright
Copyright (C) 2009 PLANET Technology Corp. All rights reserved. The products and programs described in this User’s Manual are licensed products of PLANET Technology. This User’s Manual contains proprietary information protected by copyright, and this User’s Manual and all accompanying hardware, software, and documentation are copyrighted. No part of this User’s Manual may be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form by any means by electronic or mechanical. Including photocopying, recording, or information storage and retrieval systems, for any purpose other than the purchaser’s personal use, and without the prior express written permission of PLANET Technology.

Disclaimer
PLANET Technology does not warrant that the hardware will work properly in all environments and applications, and makes no warranty and representation, either implied or expressed, with respect to the quality, performance, merchantability, or fitness for a particular purpose. PLANET has made every effort to ensure that this User’s Manual is accurate; PLANET disclaims liability for any inaccuracies or omissions that may have occurred. Information in this User’s Manual is subject to change without notice and does not represent a commitment on the part of PLANET. PLANET assumes no responsibility for any inaccuracies that may be contained in this User’s Manual. PLANET makes no commitment to update or keep current the information in this User’s Manual, and reserves the right to make improvements to this User’s Manual and/or to the products described in this User’s Manual, at any time without notice. If you find information in this manual that is incorrect, misleading, or incomplete, we would appreciate your comments and suggestions.

FCC Warning
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the Instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Caution
To assure continued compliance (example-use only shielded interface cables when connecting to computer or peripheral devices). Any changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. This device complies with Part 15 of the FCC Rules. Operation is subject to the Following two conditions: (1) This device may not cause harmful interference, and (2) this Device must accept any interference received, including interference that may cause undesired operation.

CE mark Warning
The is a class B device, In a domestic environment, this product may cause radio interference, in which case the user may be required to take adequate measures.
Trademarks
The PLANET logo is a trademark of PLANET Technology. This documentation may refer to numerous hardware and software products by their trade names. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their respective companies.

WEEE Warning
To avoid the potential effects on the environment and human health as a result of the presence of hazardous substances in electrical and electronic equipment, end users of electrical and electronic equipment should understand the meaning of the crossed-out wheeled bin symbol. Do not dispose of WEEE as unsorted municipal waste and have to collect such WEEE separately.

Safety
This equipment is designed with the utmost care for the safety of those who install and use it. However, special attention must be paid to the dangers of electric shock and static electricity when working with electrical equipment. All guidelines of this and of the computer manufacture must therefore be allowed at all times to ensure the safe use of the equipment.

Revision
User’s Manual for PLANET GEPON OLT
Model: EPL-1000
Rev: 1.0 (Aug. 2009)
Part No.: EM-EPL1000_v1
1. Introduction ... 6
 1.1 Product Features ... 7
 1.2 Package Contents .. 7
 1.3 Application .. 8
 1.4 Outlook .. 11
 1.5 Technical Specifications ... 13
2. Installation ... 15
 2.1 Pre-Installation .. 15
 2.2 Hardware Installation ... 16
 Step 1. Mounting the EPL-1000 ... 17
 Step 2. Power Connections .. 18
 Step 3. Connecting the Uplink Interface ... 19
 Step 4. Connecting the PON Interface ... 20
 Step 5. Connecting the Console and MGMT Port 21
 2.3 Software Installation .. 22
 2.3.1 Console Port Command Line Interface .. 22
 2.3.2 GUI Utility Installation .. 24
3. System Configuration Introduction ... 26
 3.1 System Introduction .. 26
 3.2 Software Introduction .. 28
 3.2.1 Basic Structure of GUI Software ... 29
 3.2.2 GUI Start Up Sequence .. 29
 3.2.3 Note on the GUI data Path ... 30
 3.3 Basic Operation of the GUI ... 31
 3.3.1 Apply Button ... 31
 3.3.2 Refresh Button .. 31
 3.3.3 Revert Button ... 32
 3.3.4 Defaults Button ... 32
4. OLT System Configuration ... 33
 4.1 OLT Network Parameters ... 34
 4.2 DBA .. 35
 4.2.1 Broadcast SLA ... 35
 4.2.2 Aggregate Shaper ... 36
 4.2.3 Priority Range ... 36
 4.2.4 DBA Drop Down Weights .. 37
 4.2.6 Polling Rates ... 38
 4.2.7 Service Level Agreement .. 39
 4.3 OLT Port Management ... 41
 4.3.1 Configuring Port in Loop .. 41
 4.3.2 Manage Flow Ctrl Parameters ... 41
 4.4 OLT Traffic Management .. 42
 4.4.1 Bridging Configuration Bridging ... 42
 4.4.2 Provisioning Filtering Rules ... 47
 4.4.3 L3 Switching ... 50
 4.5 Alarm ... 52
 4.5.1 Viewing Alarms ...</Disposed
1. Introduction

EPON is a point to multipoint communications protocol based on Gigabit Ethernet. It allows a Gigabit Ethernet communications fiber to be shared by multiple end users using a passive optical splitter. EPON communication takes place between an Optical Line Terminal (OLT) and multiple Optical Network Units (ONUs). Using standard terminology, downstream traffic flows from OLT to ONU, and upstream traffic flows from ONU to OLT. A protocol called Multi Point Control Protocol (MPCP) is used to arbitrate the channel between the ONU’s so that no collisions will occur on the common fiber.

With growing network services such as HDTV, IPTV, voice-over-IP (VoIP) and Multimedia broadband applications, and the demand of broadband rises quickly. The present Broadband environment has not already accorded with needing; however, Passive Optical Network (PON) would be the most promising NGN (Next Generation Networking) technology to fulfill the demand.

PLANET EPL-1000 is a GEPON Optical Line Terminal (OLT) which designed with one GEPON port, one Gigabit TP / SFP Combo Interface and one management port. It is easy installation and maintenance for GEPON deployment. Applications with PLANET GEPON Optical Network Units (ONU) EPN series, PLANET EPL-1000 can provide highly effective GEPON solutions and convenient management for Broadband network. PLANET GEPON technology provides the high bandwidth up to 1.25Gbps for both upstream and downstream, up to 20km Long-Distance Coverage between equipment nodes, Scalability and Flexibility for network deployment. It is a cost-effective access technology with reliable and scalable network for Triple-play service applications.

With high split ratio at 1:32 and support the usage of PLANET ONUs, EPL-1000 can minimize the investment cost for carriers. By using the advanced technology in the telecommunication industry, the EPL-1000 will provide strong functionalities for Ethernet features such as QoS, VLAN, Multicast, DBA (Dynamic Bandwidth Allocation), and Access Control List. The EPL-1000 is an ideal solution for FTTx applications.
1.1 Product Features

- PON interface complies with IEEE 802.3ah
- Supports 1 x PON Port and 1 x Gigabit TP / SFP Combo Interface
- Up to 20Km Distance
- Up to 1.25Gbps Upstream and Downstream
- Dynamic bandwidth allocation (DBA) support
- Supports IEEE 802.1q VLAN
- Supports up to 4096 VLAN and 4K MAC Table
- Supports IEEE 802.1p QoS
- Point-to-multipoint network topology
- LED indicators for link status
- Enhanced IGMP features
- User-Friendly GUI Management
- One PON port supports maximum 32 ONUs

1.2 Package Contents

- EPL-1000 Unit x 1
- AC Power Cord x 1
- Quick Installation Guide x 1
- CD (Containing User’s Manual, QIG, Utility) x 1
- Console Cable x 1
- Rack-mounting x 2
- Screw Package x 1
1.3 Application

High Bandwidth, Long Distance and Cost-Effective FTTx Applications

The PLANET EPL-1000 delivers high-speed voice, data and video services to residential and business subscribers. Through the PON technology, the EPL-1000 offers competitive advantages including a long-term life expectancy of the fiber infrastructure, lower operating costs through the reduction of “active” components, supporting up to 20km distance between equipment nodes, Easy Installation and Maintenance, and most importantly, providing much greater bandwidth. The PLANET EPL-1000 is the perfect solution for FTTx applications with cost-effective, scalability and flexibility for network deployment.

GEPON Applications

The OLT device is deployed in the central office room. The ONU devices are connected to the OLT device through an optical splitter, which forms a P2MP (Point-to-Multipoint) topology, connect to the switches or the devices as computers, IP Phone, IP Surveillance and IPTV for Triple Play Service.
FTTx is the main trend and final target for the development of optical communication. It can provide the high speed bandwidth to users without traffic jam.

GEPON technology is the most practical and feasible access solution for FTTx.

OLT is setup in the central equipment room of a community, to connect to the backbone networks of data, video and voice applications.

ONU can be deployed at residential homes via passive optical distribute network that spans up to 20km radius.

ONU can be put in a building or an end user’s room. A user can choose to use the whole ONU alone or just one port of ONU, which is bandwidth configurable and isolated from the rest ports of the ONU.

FTTH Application
1.4 Outlook

Front Panel

The front panels of EPL-1000 are shown below.

EPL-1000

Front Panel LED Definition

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>On</td>
<td>The indicator will light when OLT is opened</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Checking the power or power supply adaptor, make sure power supply has connected well</td>
</tr>
<tr>
<td>MGMT</td>
<td>On</td>
<td>Light when equipment normally connect with 100Mbps ONU port</td>
</tr>
<tr>
<td></td>
<td>Glitter</td>
<td>Glitter when the port receive or transfer data</td>
</tr>
<tr>
<td>100M</td>
<td>On</td>
<td>Corresponding indicator is on when 100Mbps equipment connect with relevant port</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Be off when 100Mbps port does not joint equipment</td>
</tr>
<tr>
<td>DUPLEX</td>
<td>On</td>
<td>Be on when port is working base on full duplex mode</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Be off when port is working base on half duplex mode</td>
</tr>
<tr>
<td>COL</td>
<td>Glitter</td>
<td>Collision happens base on half duplex mode</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Normal work status</td>
</tr>
<tr>
<td>Uplink</td>
<td>On</td>
<td>Be on when the 1000Mbps port is transferring data</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Be off when the 1000Mbps port has no data to transfer</td>
</tr>
<tr>
<td>TX</td>
<td>On</td>
<td>Be on when the 1000Mbps port is receiving data</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Be off when the 1000Mbps port has no data to receive</td>
</tr>
<tr>
<td>RX</td>
<td>On</td>
<td>Be on when 1000Mbps equipment connects with relevant port</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Be off when 1000Mbps port does not joint relevant equipment</td>
</tr>
<tr>
<td>1000</td>
<td>On</td>
<td>Be on when 1000Mbps equipment connects with relevant port</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Be off when the port does not joint 1000Mbps equipment</td>
</tr>
<tr>
<td>10/100</td>
<td>On</td>
<td>Be on when 100Mbps equipment connects with relevant port</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Be off when the port does not joint 100Mbps equipment</td>
</tr>
<tr>
<td>ALM1</td>
<td>Glitter</td>
<td>There will be one ONU or OLT alarm</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Normal work status</td>
</tr>
<tr>
<td>ALM2</td>
<td>Glitter</td>
<td>There will be one ONU or OLT alarm</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Normal work status</td>
</tr>
<tr>
<td>ALM3</td>
<td>Glitter</td>
<td>There will be one ONU or OLT alarm</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Normal work status</td>
</tr>
<tr>
<td>ALM4</td>
<td>Glitter</td>
<td>There will be one ONU or OLT alarm</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Normal work status</td>
</tr>
<tr>
<td>OPT</td>
<td>Glitter</td>
<td>The link to the switch fiber port is failing</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The link to the switch fiber port is normal</td>
</tr>
<tr>
<td>SYS</td>
<td>Glitter</td>
<td>The link to the local 1000Mbps port is failing</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The link to the local 1000Mbps port is normal</td>
</tr>
<tr>
<td>RESET</td>
<td>ON</td>
<td>ON when the system reset button is pushed</td>
</tr>
</tbody>
</table>
Front Panel Port Definition

<table>
<thead>
<tr>
<th>Port</th>
<th>Port Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PON Port</td>
<td>The PON connector allows data communication between the ONU and the OLT through a single mode fiber.</td>
</tr>
<tr>
<td>Mini-GBIC Port</td>
<td>Gigabit Ethernet SFP trunk ports.</td>
</tr>
<tr>
<td>10/100/1000M Port</td>
<td>Gigabit Ethernet electrical trunk ports.</td>
</tr>
<tr>
<td>MGMT Port</td>
<td>RJ-45 (10/100Base-TX) Port for GUI Utility Management.</td>
</tr>
<tr>
<td>Console Port</td>
<td>RS-232 port for system configuration and maintenance. (9600, 8, N, 1)</td>
</tr>
<tr>
<td>RESET</td>
<td>Reboot EPL-1000</td>
</tr>
</tbody>
</table>

Rear Panel

![Rear Panel Image]

Rear Panel Port Definition

<table>
<thead>
<tr>
<th>Port</th>
<th>Port Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC PWR</td>
<td>AC Power cord plug-in, 100 - 240V AC is allowed.</td>
</tr>
<tr>
<td>Power Switch</td>
<td>Power On / Off switch</td>
</tr>
</tbody>
</table>
1.5 Technical Specifications

<table>
<thead>
<tr>
<th>Product</th>
<th>GEAPON OLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>EPL-1000</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Downstream: 1.25 Gbps</th>
<th>Upstream: 1.25 Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical specification</td>
<td>Transmitter Power: >= 2 dBm</td>
<td>Receiver Sensitivity: >= -26 dBm</td>
</tr>
<tr>
<td>Optical split ratio</td>
<td>Up to 1:32</td>
<td></td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink Port</td>
<td>1 x Gigabit TP / SFP Combo Port (SFP GbE + 10/100/1000Base-T)</td>
</tr>
<tr>
<td>PON Port</td>
<td>1 x PON Port</td>
</tr>
<tr>
<td>Console Port</td>
<td>RS-232 Serial Port (9600, 8, N, 1)</td>
</tr>
<tr>
<td>MGMT Port</td>
<td>1 x RJ-45 (10/100Base-TX)</td>
</tr>
</tbody>
</table>

LED Indicators

<table>
<thead>
<tr>
<th>LED Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x Power LED</td>
<td></td>
</tr>
<tr>
<td>4 x MGMT LED</td>
<td></td>
</tr>
<tr>
<td>4 x Uplink Port LEDs</td>
<td></td>
</tr>
<tr>
<td>7 x Status LED</td>
<td></td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>EPON Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Compliant with IEEE 802.3ah</td>
</tr>
<tr>
<td>-</td>
<td>802.3ah Forward Error Correction support</td>
</tr>
<tr>
<td>-</td>
<td>Operation Administration Management (OAM) protocol based on IEEE 802.3ah</td>
</tr>
<tr>
<td>-</td>
<td>Dynamic Bandwidth Allocation (DBA) Support</td>
</tr>
</tbody>
</table>

Standard

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.3ah</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.3</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.3u</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.3x</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.3z</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.1d</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.1p</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.1q</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.1x</td>
<td></td>
</tr>
<tr>
<td>System Feature</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>- MAC address learning and binding</td>
<td>- Service Level Agreement (SLA) support</td>
</tr>
<tr>
<td>- Service Level Agreement (SLA) support</td>
<td>- Unicast, broadcast and multicast traffic control</td>
</tr>
<tr>
<td>- Unicast, broadcast and multicast traffic control</td>
<td>- 128-bit Advanced Encryption Standard (AES) encryption</td>
</tr>
<tr>
<td>- 128-bit Advanced Encryption Standard (AES) encryption</td>
<td>- MAC Filtering</td>
</tr>
<tr>
<td>- Supports QoS based upon Port, IEEE802.1p, IPv4 Type of Service (ToS) or</td>
<td>- Supports IGMP Proxy / Snooping</td>
</tr>
<tr>
<td>Differentiated Services (Diff-Serv), IPv6 Traffic Class, 802.1Q VLAN ID,</td>
<td>- Remote loop-back test</td>
</tr>
<tr>
<td>Destination MAC address or Source MAC address</td>
<td>- Up to 256 Logical Link IDs (LLID)</td>
</tr>
<tr>
<td>- IPv4 and IPv6 support</td>
<td>- IPv4 and IPv6 support</td>
</tr>
<tr>
<td>- Up to 4096 VLAN support</td>
<td>- 4K MAC Addresses support</td>
</tr>
<tr>
<td>- 4K MAC Addresses support</td>
<td>- 32 Queues (upstream / downstream)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- User-Friendly GUI Utility</td>
<td>- Local RS-232 CLI management</td>
</tr>
<tr>
<td>- Local RS-232 CLI management</td>
<td>- Firmware and Configuration upgradeable via Utility</td>
</tr>
<tr>
<td>- Firmware and Configuration upgradeable via Utility</td>
<td>- Remote ONU Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment Specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension (W x D x H)</td>
<td>432 x 207 x 43mm</td>
</tr>
<tr>
<td>Power</td>
<td>100 – 240V AC</td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating temperature: 0 ~ 50 Degree C</td>
</tr>
<tr>
<td></td>
<td>Storage temperature: -30 ~ 60 Degree C</td>
</tr>
<tr>
<td>Humidity</td>
<td>Operating Humidity: 10 ~ 90% non-condensing</td>
</tr>
<tr>
<td></td>
<td>Storage Humidity: 5 ~ 95% non-condensing</td>
</tr>
<tr>
<td>Emission</td>
<td>FCC, CE</td>
</tr>
</tbody>
</table>
2. Installation

The followings are instructions for setting up PLANET EPL-1000. Refer to the illustration and follow the simple steps below to quickly install your GEPON OLT.

2.1 Pre-Installation

This section provides the information users have to wear before installing the EPL-1000. The information includes required installation tools, safety requirements, and electrostatic discharge protection.

Tools and Test Equipment Requirements

To install and maintain the EPL-1000, you should have the tools and test equipment listed in the table below.

<table>
<thead>
<tr>
<th>Item Required</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-static wrist strap</td>
<td>Protect the EPL-1000 system from electrostatic discharge damage.</td>
</tr>
<tr>
<td>Hand tools</td>
<td>Screw drivers for equipment removal and replacement.</td>
</tr>
<tr>
<td>Wire cutter/stripper</td>
<td>Prepare wires for electrical connections.</td>
</tr>
</tbody>
</table>

Safety Requirement

To prevent possible serious injury, do not apply power to the EPL-1000 system until you’ve completed all of the installation procedures and connected it to the external facilities. Be cautious, when turning on/off the EPL-1000 system power.
2.2 Hardware Installation

The PLANET EPL-1000 is a 1U high box-type GEPON OLT with rack-mountable enclosure. It can be installed in a standard 19-inch rack by using the mounting brackets provided. Mount the shelf on the rack using the large screws provided. The procedure to connect and wire the system is as follows.

Installation Overview

The installation consists of the following procedures. Each procedure will be explained in detail in the following sections:

<table>
<thead>
<tr>
<th>Step 1:</th>
<th>Mount the system into the desired location of a rack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2:</td>
<td>Connect to the AC power supply, and then check the voltage. Make sure the power is proper for EPL-1000 and plug in the Power.</td>
</tr>
<tr>
<td>Step 3:</td>
<td>Connect the network cable and optical to EPL-1000.</td>
</tr>
<tr>
<td>Step 4:</td>
<td>Connect Console cable to COM port of a computer for CLI management. Then run the terminal program with the setting shown below: Please see more details on Chapter 4.2.</td>
</tr>
</tbody>
</table>

![Console Setting](image)

- 16 -
Step 1. Mounting the EPL-1000

The position and orientation of the brackets depends on the rack used for mounting. The OLT can be front-mounted in a standard channel rack; and it can be shipped with the mounting brackets installed in one of three mounting positions.

![Mounting Bracket Orientation (Top View)](image)

After the site requirements have been verified, the chassis may be installed at the specified location. When mounting the chassis, practice good safety habits. Use two or more people to secure the chassis. Relay rack mounting normally requires at least two people.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate the chassis and obtain the appropriate chassis mounting hardware.</td>
</tr>
<tr>
<td>2</td>
<td>Determine and obtain the tools required for the chassis mounting hardware.</td>
</tr>
<tr>
<td>3</td>
<td>From the front of the relay rack, position the chassis in its relay rack mounting location.</td>
</tr>
<tr>
<td>4</td>
<td>Using the appropriate rack mounting hardware, secure the chassis in its relay location on both left and right side of mounting bracket.</td>
</tr>
</tbody>
</table>

![Mounting Bracket Position for Standard Mount](image)
Note — The chassis should be empty during the chassis mounting procedures. Remove any unit in the chassis, and store them according to static-sensitive device storage procedures.

Warning — Hazardous voltages may exist on the chassis. Always practice good safety habits when wiring a live circuit or performing maintenance.

Step 2. Power Connections

AC Power Connection
Connect the AC power cord to the AC supply socket on the rear panel of the OLT, and plug the cord into the external power source. The voltage must be 100 to 240V AC (±10% tolerance).

Warning — Ensure that all power sources to the chassis (power distribution panel) are turned off during the connection.
Step 3. Connecting the Uplink Interface

Uplink Connection

The system supports one Gigabit TP / SFP Combo (SFP GbE and 10/100/1000Base-T) Interface. You can select the proper media for your applications.

Mini-GBIC (SFP) Interface

Prepare a proper SFP module and install it into the optical trunk port. Then you can connect fiber optics cabling that uses LC connectors or SC connectors (with the use of an optional SC-to-LC adapter) to the fiber optics connector on the uplink port.

Warning — Never look directly at the transmitting ports of optical interface that might be emitting laser, in order to prevent damage to the eye from the laser radiation.
RJ-45 Electrical Interface

The pin assignment of RJ-45 connector on the Uplink port is shown in the following figure and table.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12345678</td>
<td>T/Rx+, T/Rx-</td>
</tr>
</tbody>
</table>

1,2 T/Rx+, T/Rx-
3,6 T/Rx+, T/Rx-
4,5 T/Rx+, T/Rx-
7,8 T/Rx+, T/Rx-

Step 4. Connecting the PON Interface

PON Connection

The system supports one fixed PON port, the max. Split ratio is up to 1:32 per PON port. Connect the single mode fiber to the Splitter or ONU. The PON port provides the high bandwidth up to 1.25Gbps for both upstream and downstream, up to 20km Long-Distance Coverage between equipment nodes.
Step 5. Connecting the Console and MGMT Port

You can use the Console Port and MGMT Port to manage the EPL-1000. The connection figure is shown below; please follow next section to setup your system.
2.3 Software Installation

This section illustrates how to establish basic connectivity on the PON. After completing this section the user will be able to transport packets across the system, and will be ready to start advanced testing. The Software Setup consists of installing a Terminal utility to access the Evaluation Kit CLIs and a sophisticated GUI to manage the system.

2.3.1 Console Port Command Line Interface

The EPL-1000 has a 10/100 Mb MGMT port in for the connection of a management GUI. It also has Command Line Interface (CLI) access through a Console port on each board (ONU and OLT). By connecting a straight-through serial cable to any board to a serial COM port on a PC, the user can access each chip for low level diagnostics and debugging. Although there are many commercial available Terminal Utilities such as MS Windows HyperTerminal, Tera Term is used in this User’s manual as the Terminal Utility of choice. Tera Term is recommended if you wish to perform firmware upgrades using the CLI. This has been found to be the most reliable tool for downloading binary files to the ONU and OLT. It can be downloaded for free from http://hp.vector.co.jp/authors/VA002416/teraterm.html. Please download and install on each PC being used to connect to EPL-1000. Once installed, configure the Transmit settings as follows.

1) Setup the serial port by selecting “Serial Port” from the Tera Term “Setup” menu.

![Tera Term Serial Port Settings](image)

2) Set up the Serial port with the settings shown in 0 and click OK.
EPL-1000 GUI Personality Setup
The EPL-1000 supports a 10/100Mb Management interface for User-Friendly GUI Management. Prior to installing the GUI, it may be necessary to modify the Host and Management IP addresses configuration stored in the OLT personality flash. It can either be left as the defaults or changed to suit your own network environment.

You can see what the current settings are by typing the following commands.

Commands shown below must be entered at the Tera Term command prompt for the EPL-1000.

1) 3721/>pers [Enter]
2) 3721/pers/>show [Enter]

This will result in information about the state of the personality flash being displayed. The items near the end of the prints are the current Management Interface Settings. Typically the factory settings are:

Management interface settings:
Physical interface: ethernet
Management VLAN: 4095
Transport protocol: udp
Local IP config: static
Host IP config: static
Host IP: 192.168.1.100
Mgmt IP: 192.168.1.101
Netmask: 255.255.255.0

The Mgmt IP address refers to the IP address of the OLT 10/100Mb MGMT Port. The Host IP address refers to the IP address of the PC which is running the GUI Utility. The default settings are for both of these IP addresses to be statically assigned. The netmask should be set to suit the class of the IP addresses. In addition to the 10/100Mb MGMT Port, management can also be performed in-band. In this case the MGMT Port is not connected. Instead the OLT is programmed for in-band management and the user sets the VID of the VLAN used for management. The Transport protocol should always be set to UDP.

The following sections outline how to change the settings for each of the management options.

MGMT Port – Static IP Addresses
If you are controlling the EPON system from a local PC connected directly to the management port, these settings should suffice. Additionally if you have the OLT connected to your network and you are using local addressing in the 192.168.1.x subnet, they will also
be appropriate. If on the other hand you wish to change them to match your local network, you may do so as follows:

To change the IP Address assigned to the Host PC (this must match the Host PC IP Address):
1) 3721/>pers [Enter]
2) 3721/pers/>hostip 192 168 1 100 [Enter]

To change the IP Address that is assigned to the OLT management port:
1) 3721/pers/>mgmtip 192 168 1 101 [Enter]

If you are not using Class C Addresses, you should also change the netmask to suit:
1) 3721/pers/>netmask 255 255 255 0 [Enter]

To make the new settings take effect you must reboot.

Prior to installing the GUI, you must set up your network adapter’s IP address to match the setting found in the OLT’s personality flash (default = 192.168.1.100). Set the adapter’s IP to match the value found in the personality flash for Host IP. Once the adapter is set appropriately, connect an Ethernet cable to the 10/100 Mb management port. In addition, you should also set the Management Port Parameters in the GUI’s Utilities -> Settings dialog. These should match the settings found in the CLI.

2.3.2 GUI Utility Installation
The Utility comes with sophisticated software Graphical User Interface (GUI). It is highly intuitive and allows the user to control the EPON and set such things as SLAs, bridging and VLAN modes, static table entries, and to perform firmware upgrades etc. It is found in the Utility folder on the CD provided. To install and use the GUI, do the following:
1) Copy the contents of your CD to the PC you will be using as your EPON management PC.
2) Locate the Utility folder and create a shortcut to the GUI Utility.exe file and place on your desktop or somewhere suitable.
3) Once you have connected all of the hardware, followed the instructions in the Initial Power Up section, set the personality flash to suit your management interface method you can start the GUI. The default MGMT IP is 192.168.1.101 and the Host IP is 192.168.1.100. Please make sure that the IP of your management PC is 192.168.1.100. Double click on the GUI Utility Icon in the Utility folder or at the shortcut. The GUI should start and you should see a window similar to the one shown as below figure.
If the OLT is running normally and the ONUs register each of their LLIDs, you should see something similar to the figure. The left hand pane shows the MAC addresses of the OLT and the ONU’s LLIDs. Depending on the number of ONUs, LLIDs, MAC addresses etc you may see something slightly different. If the GUI fails to connect to the OLT, check the IP addresses of the Host PC and the management port. Make sure you can ping the IP address assigned to the management port. Also verify that the Host and management IP addresses match in the GUI’s Utilities -> Settings tab.
3. System Configuration Introduction

3.1 System Introduction

PLANET EPL-1000 is a new generation of minitype GEPON OLT equipment, is a kind of telecom FTTH bandwidth connecting equipment supplied for telecommunication dealer. Perfect integration, applied flexibility, high reliability, managing, free expansibility, group web and QoS guarantee are its features. EPL-1000 integrates EPON system based on the IEEE802.3ah new standard, the fiber speed of upstream and downstream can be up to 1.25Gb/s. Each EPON system is available for max 1:32 WDM to transmit datas based on forming fiber web by fiber and 32 EPONlong-distance ON equipments, with great capacity, excellent secrecy, web-grouping flexibility and saving the line resources and the quantity of end equipments.

EPL-1000, mainly used for FTTH project, make fiber to household come true, available for VoIP, high-speed data, IPTV, etc. also manage the performance, failure and deploy. It can be put in CO side. Via the User-Friendly GUI Utility, administrator can manage and configure the OLT and ONU equipment on central side.

Characteristics:

- **Compatibility**

 EPL-1000 is a mini-box-type equipment, only 1U size, easy installation and maintenance. The EPL-1000 is fully compatible with PLANET ONU EPN-102 / 104, you can manage and deploy the GEPON environment easily.

- **Long-distance**

 It is up to 20kms, and can save the cost of web-room construction and maintenance for telecommunication dealer, as it is passive accessories.

- **High reliability**

 Recover after equipment regroups and the power interrupts unconventionally, the system can come back to normal work quickly as the storage scheme.
Full QoS guarantee

Each PON supports up to 256 logic accesses, and single ONU can support many separate logic accesses. For good QoS, it can adopt AES-128 encryption for each access, and supports strong DBA with powerful bandwidth sharing ability, flexible bandwidth management and increasing bandwidth using rate effectively. The double managing mode based on SLA and PRI can ensure the users’ mini bandwidth demand and low time-delay requirement for the PRI operation.

Great OAM characteristic

EPL-1000 supports many operating and manageable telecom characteristics, such as ONU auto-detection, auto-registration, testing user connection, binding MAC address and filtration, IP address binding and filtration, bandwidth control, VLAN (based on two division means of port and 802.1Q), flow control, port aggregation, port mirror and broadcast control.
3.2 Software Introduction

Preface

The Planet GEPON solution, including the OLT EPL-1000 and ONU EPN-102/104, all designed by Teknovus GEPON technology. It is based on the TK37XX family. The EPL-1000 is TK3721 OLT chipset and EPN-102/104 is TK-3715 ONU chipset. For inconvenience, following information will use TK37XX to introduce the software configuration.

This document is intended for engineers operating the TK37XX family of integrated EPON solutions. The document explains how to use the TK37XX PC HOST GUI Utility, for the purpose of evaluating the functionality and usability of TK37XX Host Interface Protocol. This manual assumes that the reader has a technical background and a base level of understanding regarding the basic operation of PON equipment, but does not assume any prior experience using the TK37XX or any other product. The GUI Utility is a demonstration package, intended for evaluation purposes only.

Organization of the GUI

The screen real estate used by the GUI is divided — MDI style — into three sash windows. The upper left panel displays the entities that may be managed by the TK37XX Host Interface, including the OLT, ONUs and Logical Links. This sash window shall be referred to as the Element Status Window. Left clicking on an entity with the mouse will open a tabbed panel in the upper right sash window that may be used to manage the entity. This sash window shall be referred to as the Entity Management Window. The bottommost sash window is used for the purpose of logging the host interface message that are sent and received by the GUI, and shall be referred to as the Message Log. The Message Log displays the commands that are sent and received from the GUI as well as the raw bytes sent and received by the physical layer interface.
3.2.1 Basic Structure of GUI Software

The GUI software breaks down into 4 logical layers the first layer is the physical interface. The operating system, or driver resource, used to send and receive the raw Host Interface messages. The next layer consists of the underlying messaging system used by the GUI. This layer is responsible for parsing and queuing of Host Interface Messages as well as providing reliability. The next layer is the application layer. This layers responsibility is to display the GUI windows and provide services such as alarm auditing.

3.2.2 GUI Start-Up Sequence

When the user invokes the GUI Utility.exe by double clicking on the T icon the GUI will perform the following functions:

Step 0: Attempt to establish a UDP connection to the TK3721. This process will continue indefinitely or until the connection is established.

Step 1: After the connection is established the GUI will test the interface by attempting to send and receive a host interface message. The natural choice (and the choice that the GUI will use) is the Get OLT Information. This message contains information about the TK3721 that the host may use to identify product version information.

Step 2: Once the interface has been established the next step the GUI shall perform is to obtain the list of discovered links. It should be noted that once the interface is detected the GUI shall initiate a process to handle autonomous events. Receiving an autonomous event will make the remaining sequence non-linear, as the autonomous events will be inserted into the GUIs message queues with other response messages, refer to the note on the GUI data path below.

Step 3: Once the GUI receives this list, it will query the links for the identity of their associated ONUs by issuing a Get ONU Info Host Interface Message for each link found in the list. Of course if an autonomous event (such as link discovery), occurs that event will also be processed simultaneously with the querying process. If the GUI is configured to authenticate its links, the link authentication will also take place. Again there is no set
sequence and multiple LLIDs may be authenticated simultaneously.

Step 4: Having discovered the known managed entities the GUI will next query the TK3721 for the list of blocked links. These links will be displayed in the list of unassociated links in the managed entity status window. If the ONU is connected to the TK3721 and operating properly, then unblocking a LLID will cause a new ONU to appear in the entity status window. The LLID will be associated with this new ONU.

Step 5: After the GUI has finished querying the OLT, it will remain in the idle state until the user performs some action. In the idle state the GUI will audit the OLT for alarm messages if configured to do so, otherwise it will not send any Host Interface Messages until the GUI operator directs it to do so, by initiating a query or provisioning action.

3.2.3 Note on the GUI data Path

The GUIs Data Path consists of simple non-blocking queuing mechanism that achieves very good utilization of OLT recources. However in such a system there is no set sequence in which messages will be issued to the OLT. Thus that depending on very minor timing differences between command response times, the GUI event log trace will be different. It is important to note that all host interface messages are required to encapsulate a complete set of provisioning operations and therefore do not require that provisioning actions be performed in any set sequence.
3.3 Basic Operation of the GUI

As stated earlier, left-clicking the mouse on an entity in the Status Window shall cause an associated tabbed dialog to appear in the Management Window. This dialog exposes nearly the entire set of host interface commands associated with the managed entity. The tabs are organized into roughly the same categories as the TK37XX Host Interface document. And with few exceptions all of the panels function similarly.

GUI Controls

All controls in the GUI are derived from a common set of base classes and thus operate in similar ways. Most panels include 1 or two buttons that invoke the GUI to perform various transactions with the OLT. All such controls having the same basic function will also be given the same label. For simplicity of understanding an explanation of each button type appears bellow.

3.3.1 Apply Button

Most GUI panels manage only a single TK3721 Host Interface message. Every time the panel is displayed the GUI will automatically query the OLT for the latest attributes by issuing the appropriate Host Interface Message to the TK3721 firmware. If the query operation is successful the panel will be updated with the latest values from the firmware. As a general rule, when the panel is updated from a host interface message the associated Apply button will be disabled to indicate that the values displayed are an accurate reflection of the current state of the managed entity associated with the panel. If an error occurs the Apply button will not be disabled indicating that the displayed values are not those of the managed entity. Changing a GUI widgets value will cause the Apply button to be enabled allowing the GUI operator to apply the new provisioning to the managed entity.

3.3.2 Refresh Button

Button’s labeled refresh are never disabled. The action associated with a Refresh button is always to query the state of the associated attribute. The result of a successful Refresh operation will be the same as if the panel is viewed for the first time. That is, the OLT will query the managed entity associated with the panel, and if the operation completes the Apply Button will be disabled.
3.3.3 Revert Button

The Revert Button had identical functionality to the Refresh button, but is semantically different. The idea behind the Revert Button is that you can “revert” the panel's state to the initial state of the panel prior to changing a GUI widget. Semantically, once the apply button has been pressed it is not possible to revert. The Revert Buttons are currently being phased out in favor of the Refresh Button.

3.3.4 Defaults Button

The Defaults Button is used to restore the managed entity to the default settings found in the Host Interface document. This mechanism employs a “canned” Host Interface Message that will be issued to the OLT when the button action is invoked by left clicking on the button.

For most commands a provisioning operation will also result in a subsequent query. In such cases the Apply Button will not be disabled until the query operation completes. This audit mechanism ensures that the values displayed by the panel are the same values stored in the relevant managed entity. For a few Host Interface Messages the granularity of the data is less than that of the provisioned value.

Some Apply actions result in multiple commands being issued to the OLT.
4. OLT System Configuration

This section describes the various panels found in the GUI, their function, and the method by which they may be used to test the TK37XX Host Interface. The Panels are organized by entity and generally follow the order in which they appear in the associated tabbed dialog box. In the rare case that the GUI abstracts some detail of the host interface, a flow chart of the message exchange sequence is presented. Where the message performs a complex operation on the PON a related diagram may be present as a visual aid. Most panels are subdivided into boxes with each box controlling exactly one host interface message. In most cases the attributes are presented in the same order (as read from top to bottom) as that in which they appear in the Host Interface Message. Thus for the most part the remainder of this document is simply a rehashing of the descriptions already available in the Host Interface Document.

Force link rediscovery de-registers a Logical Link, while allowing it to re-register, as if it had been newly attached to the EPON network. This command is useful, for example, when the Network operator wants to be able to force a re-arrival as part of their debugging process to try to clear a problem, or to re-authenticate the user/ONU on that link.

The Block Link command prevents the given Logical Link (MAC address) from registering on the EPON. The OLT will simply ignore registration requests from the blocked ONU. If the given ONU is already registered, the Logical Link will be deregistered, causing the ONU to depart from the network. All further requests to register from the ONU are ignored until the Host issues an Unblock Link command.

Up to 256 ONU labels (MAC addresses) can be on the block list at one time.

Link blocking is intended to be a temporary measure used to suspend service for reasons such as late payments or a troublesome customer. When the issue has been resolved, or the ONU has been physically removed from the network and no longer requests service, it can be removed from the blocked list with the Unblock Link command. If the ONU is still connected to the network and attempting to register, the ONU will be once again allowed onto the network.

Service provisioning such as SLAs or Bridging modes are not affected by the Block Link command. Any ONU provisioning should be deleted with the appropriate other commands, if desired. A blocked link will appear with a black status icon.

Please note the difference in the behavior with respect to the Block Link command where an Unblock Link is required to undo its effect. Link Rediscovery invites the ONU to re-register this link with the network, while Block Link prevents the ONU from returning on that link after deregistration.
OLT Panel
The OLT panel is used to apply settings to OLT attributes. In some cases this may also involve OAM transactions with ONUs. It should be noted that certain attributes of the OLT such as SLAs are controlled via the Link Panel.

4.1 OLT Network Parameters

These commands allow the host to configure the way the PON will be managed.

OAM Rate
This command is used to view the default OAM rate

Loopback Timeout Value
This sets the loopback failsafe timer. If the operator sets a port in loopback mode the loopback the OLT will initiate a count down timer for Loopback Timeout Value ms. When the timer expires the loopback will automatically be canceled.

MPCP Parameters

- **Period**
The interval at which the OLT will issue a discovery gate.

- **Window**
The discovery window size in bytes.

VLAN Ethertype
This is the Ethertype value that the OLT will use to classify VLAN traffic (default = 0x8100)
4.2 DBA

The DBA tab allows the user to control virtually every parameter of the TK3721’s highly flexible and efficient Hierarchal Weighted Round Robin DBA algorithm. The DBA algorithm supplied with the OLT is similar to algorithms found in high performance ATM switches and is capable of issuing 4 grants every 282 micro seconds, by far the fastest cycle time of any EPON system deployed today. The TK3721’s DBA can meet 1 ms. Latency requirements for high priority services in a 32 ONU deployment.

4.2.1 Broadcast SLA

This command is identical to the functionality of the Link SLA Panel except that it is used to provision an SLA for the broadcast channel, as apposed to a unicast link. This unique feature of the OLT allows the OLT To use its large 40Meg buffer ram to serve the requirements of all ONUs, resulting in a 1:32 cost reduction (assuming 32 ONU deployment).
4.2.2 Aggregate Shaper

This command lets the Host restrict the bandwidth available to the OLT for user data traffic in each direction. This feature can be used to protect the core network from bursty upstream flows and increase the accuracy of SLA enforcement. Aggregate bandwidth control can be disabled by setting the parameters to zero; the feature is disabled by default.

For accurate Min SLA enforcement, recommends that the upstream aggregate shaper be provisioned for 50-100Mbps less than the maximum bandwidth of the PON. Typical values are 800-850Mbps.

4.2.3 Priority Range

The priority range determines how many links may be registered in each priority level. This command should be applied immediately before registering any links, or after links are deregistered using the Disable OLT command. It is a good idea to configure the OLT in strict boot mode, allowing the host software time to apply this command and then explicitly enable the OLT to register links.

The OLT must be disabled prior to applying this command; otherwise the OLT FIFOs will become corrupt. It is recommend that this operation be performed once during the initial bring up of the PON.
4.2.4 Shaper Drop Down Weights

This command is not available for the TK3721, and applies to future chipsets only. The TK3721 has a strict priority FIFO scheduler.

4.2.5 DBA Drop Down Weights

DBA drop down weights are used by the DBA to reserve bandwidth for each priority level. This allows the OLT to fix the latency and reserve a percentage of bandwidth for links in each priority level.

The drop down weight for priority level \(n \) **MUST** be greater than or equal to the provisioned DBA Weight for all links in priority level \(n + 1 \).
4.2.6 Polling Rates

The polling rates panel allows the operator to configure the rate at which each link will be solicited to determine if it has any data to transmit. Smaller values result in lower latency and increased overhead. For priority 0, the scheduling latency is approximately equal to the larger of the polling rate and the cycle length.
4.2.7 Service Level Agreement

Every element scheduled by the OLT has an associated SLA record which can be configured by the GUI or other host systems.

Every Logical Link registered by the TK3721 has an associated SLA maintained by the TK3721, and stored internally in its NVS database (if enabled to do so). In the upstream direction, the TK3721 uses a reporting mechanism specified by 802.3ah to monitor the status of each registered link. When a particular Link’s FIFO(s) has data to send this information will be conveyed to the OLT in the form of a report message. The OLT will use this information and the SLA associated with the link to schedule a time slot in which the link may transmit its data. Because the OLT schedules the links, rather than relying on mechanisms in the ONU, service contracts are enforced in the central office, and excess bandwidth may be allocated efficiently. SLA enforcement is accurate to within 2% of the provisioned value.

- Enable SLA

If checked, the OLT will allow the element to transmit user data.

- Max Bw

Configures the maximum sustained rate at which a link may transmit data.

- Min Bw

Configures the sustained rate at which the user may transmit without loss of data, this value should always be less than or equal to Max Bw.

- Mode

Determines the scheduler level

From the perspective of the GUI or other external device managing the TK3721 “Delete” semantically
equivalent to restore factory default and “Create” is equivalent to change the SLA from default value.

It is important to note that though the logical link panel appears grouped under the ONU, logical link attributes are NOT necessarily attributes of the ONU itself. Logical links ALWAYS make two associations one with the ONU and one with the OLT. Unless explicitly specified, logical link parameters may be parameters of the OLT, ONU or both. It is best to assume that ALL operations performed on a logical link involve OAM transactions with the ONU.

Though the TK3721 has a Min/Max FIFO scheduler in the upstream direction, the DBA is not directly influenced by the Min scheduler. Instead it responds to signals generated by queue depth. To ensure that the Min’s are scheduled accurately it is necessary to restrict the total upstream bandwidth of the PON by 50 to 100Mbps. This can be accomplished by provisioning an aggregate SLA.

As per IEEE 802.3ah, any ONU admitted to the network will be granted a small amount of bandwidth sufficient for minimal OAM operation, even if the SLA is disabled. A disabled SLA can use up to 256K. As per specification the ONU is not aware of SLA’s, and thus will continue to transmit user data which will be dropped by the OLT. To prevent the ONU from transmitting this unwanted data it is recommended that the ONU be configured in strict boot mode. In this mode the ONU will ONLY transmit user data after the host software has explicitly enabled it to do so.

In strict (or host driven) boot mode the SLA will be configured in the disabled state every time the link is registered. In auto-boot mode the state of the SLA is enabled by default and stored in the OLT NVS if NVS is enabled.
4.3 OLT Port Management

Allows the user a simple interface to control port parameters such as line speed and flow control. If Auto Negotiation is enabled, the speed and duplex settings used will be based on the result of negotiating with the link partner. Default values depend on the personality settings. The table below describes the Set command. In the current firmware release, flow control is not auto negotiated. If flow control is enabled the firmware will configure the Phy to advertise flow control. Note however that pause frames will be transmitted regardless of the capabilities reported by the link partner.

4.3.1 Configuring Port in Loop

Allows the user to set a loop back, currently the loop back position must be set to MAC.

4.3.2 Manage Flow Ctrl Parameters

Sets the flow control on/off threshold values.

For the Flow Ctrl thresholds: the precision of the values is less than the displayed percentages. So small changes between the provisioned and actual value may exist.

Figure 6: Uplink Port Loopback
4.4 OLT Traffic Management

The traffic management panel allows the user to change bridging modes, apply complex filters, and expose many of the OLTs advanced hardware and software features related to traffic management.

4.4.1 Bridging Configuration Bridging

This panel facilitates provisioning of the bridging mode for each link, as well as the size of the dynamic forwarding table on a per link basis. If the bridging mode supports VLAN, the VLAN tag or tags may be specified using this panel. For certain VLAN modes such as priority shared VLAN multiple links may be provisioned in the same VLAN. These modes will make forwarding decisions based on multiple fields such as MAC address and VID.

A link may be provisioned in only one bridging mode. However, multiple links, each provisioned in a different mode, may be associated with a given egress ONU port.

- Changing the bridging mode for a particular logical link

Step 1. Choose the logical link

Step 2. Apply the new bridging mode.

Notice that after the bridging mode has been applied the Apply button will change to a grey color.
Notice that after the VLAN has been provisioned the panel will change to a grey color. The user must delete the VLAN provisioning before applying a new tag value.

Once a VLAN has been provisioned, the OLT will not permit the bridging mode to be changed without first deleting the VLAN provisioning. If an attempt is made to change the bridging mode, the GUI will display a dialog box allowing the user an opportunity to automatically delete the VLAN provisioning.

Clicking “Yes” will delete the VLAN tag and change the bridging mode. Clicking “No” will abort the operation. The exact panel used to apply VLAN provisioning will change based on the provisioned VLAN mode.

Provisioning a link in a Dedicated VLAN

Dedicated VLAN modes associate a single VLAN tag with a particular Logical Link. The provisioned priority field (CoS) will be added to upstream frames. However, only VID is used to make a downstream bridging decision. VLANs are terminated by the TK3721.

Once a value has been entered for VLAN ID and Pri (CoS), the “Set” button may be used to apply the provisioning. The “Clear” button is used to delete the provisioned tag.
Provisioning a link in a Shared

Shared VLAN modes associate multiple links with a single VLAN. The upstream CoS inserted by the TK3721 is always 0.

Notice that the panel features a “Set” button similar to the panel used to provision the dedicated VLAN. This button has identical functionality.

In addition to the VLAN provisioning box, a second box appears to the right that is used to display a list of all logical links in the provisioned VLAN. No links will be displayed in this box until the VLAN provisioning is applied. Clicking on a logical link in this list allows the user to quickly change the context of the panel to the other logical link. This is useful when changing links to a different VLAN.

Provisioning links in Transparent

Transparent VLAN uses the VLAN tag for downstream bridging decisions but does not modify the tag. A single link may be provisioned with multiple VIDs. It should be noted that the CoS field is not used for bridging decisions. Upstream frames shall be bridged regardless of the Tag value.

The “Add” button is used to add a VID and the “Delete” button is used to remove a VID.

A box to the right of the provisioning window is used to display all of the VIDs associated...
with a particular logical link provisioned in Transparent VLAN. Selecting a VID in the box moves it into the provisioning window, allowing it to be quickly deleted. Once a VID is deleted the VLAN field in the provisioning window will take on one of the other provisioned values, allowing all VLANs to be quickly deleted with repetitive mouse clicks.

- **Provisioning links in a Cross Connect**

Cross Connects are used to create a private link between two ONUs on the same PON. For instance, a link Cross Connect might be used to facilitate data communication between two offices within the same organization. Both links must be provisioned in the Link Cross Connect mode before a Link Cross Connect can be established. Once both links have been provisioned in Cross Connect mode, use the Connect button to bridge the links.

Once cross-connected the control will gray out indicating that the action was completed successfully. Only a single Cross-Connect may be established with any given link.

- **Provisioning Priority VLANs**

Priority VLANs use the ToS or CoS field to make bridging decisions. The decision of which field should be used is based on a per link attribute, however, in the TK3721 this is a global setting. Once one link has been provisioned in a priority VLAN, all links MUST provision the ToS/CoS select the same way. It should be noted that if L3 switching is used only ToS may be used for the priority field.

- **VID Field**

This field allows the user to select the VID. The VID will be inserted into upstream frames arriving on links provisioned in the VLAN. Downstream the VID will be used for classification.
- Upstream CoS -

The upstream CoS is the CoS value that will be inserted into upstream frames, forwarded on the VLAN. It is VERY important to notice that a unique upstream CoS and VID combination defines a unique VLAN. For every link provisioned in a unique VLAN, EVERY attribute in the VLAN record other than the link label, MUST be identical. Identical, means that for link A and link B provisioned in VLAN C a bitwise comparison of the two records used for provisioning would show equality. If this is not the case the TK3721 will not function correctly, and NVS erase followed by system reset may be required to restore proper functionality.

- Max/Min Range -

Allows the user to provision an INCLUSIVE range of priority values used for downstream classification. Packets with matching VID and a CoS/ToS value in the range specified will be classified onto the VLAN. It is VERY important that for every VID, there exists VLANs \{V0, V1, ..., Vn\} such that together they specify a complete range \([0, 7]\) with no holes. Also note that for any two unique VLANs with VID=A, it is illegal that the two VLANs Max/Min contain ANY overlapping regions (e.g. \([0, 4]\) and \([4, 7]\) would be illegal).
4.4.2 Provisioning Filtering Rules

This panel allows the operator to create rules to filter (drop received frames), based on many different criteria (Rules).

- Selecting the Port for Filtering

The Port to Filter is selected using the Port drop down box.

- Using the Rule Grid

The Filtering Panel Rule Grid is almost identical to the Classification Panel Rule Grid, except that the Q column is absent, as it is not required.

- Constructing an OLT Filtering Rule

Step 1. Choose the Field Select. Field Selects defined by the OLT are given a descriptive label.
Step 2. Choose an appropriate Operator. The operator tests the portion of the frame specified by the field select.

Step 3. Choose an appropriate Lookup Value. This is the value that will be used by the operator in the comparison. This step is only applicable to binary operators. If the operator selected is unary (such as Field Exists) the Value field will be disabled.

Step 4. Add the clause to the Rule Editor using the left arrow button. Note that the right arrow button can be used to remove a selected clause from the Rule Editor.

Step 5. Repeat steps 1-4 until the desired rule has been created.

Adding a Filtering Rule

Step 1. Select the Port to Filter.

Step 2. Set the rule precedence level. The Rule Level may be configured for 1 of 8 different precedence levels, 0 being the highest priority and 7 being the lowest. Currently the precedence level of user provisioned filtering rules is of little importance.
Step 3. Add the filtering rule to the OLT by clicking the Add button.

Adding a filtering rule will cause the OLT to be updated without an additional apply action.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Field Select</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>04 - VLAN</td>
<td>==</td>
<td>0x0000000000000002</td>
</tr>
<tr>
<td></td>
<td>05 - User 1</td>
<td><=</td>
<td>0x0000000000000007</td>
</tr>
</tbody>
</table>

Deleting a Filtering Rule

Once a filtering rule has been added the rule may be deleted by selecting it from the Rule Grid and clicking the Delete button.

Once the rule has been successfully deleted it will be removed from the Rule Grid.
4.4.3 L3 Switching

The OLT may be configured as an L3 bridge, enabling the OLT to learn IPv4 destination addresses. The L3 panel allows the user to configure the OLT for L3 switching. This operation should generally be performed prior to applying any VLAN provisioning. Bridging configurations that make use of the CoS field are incompatible with L3 switching. The primary advantage of L3 switching is security. L3 switching enables the OLT to direct ARP and RRARP frames based on the learned IP address, making the network less susceptible to MAC spoofing attacks.

- **DHCP Snooping Enable**

This parameter enables the OLT to learn IP frames based on snooping DHCP offer messages.

- **DHCP Option 82 (Relay Agent Sub-Option…)**

If L3 switching is enabled the OLT may be configured as a DHCP relay agent (RFC 3046.) This will enable the OLT to insert the Relay Agent Sub-Option into snooped frames.

- **DHCP IPv4 Address Learning**

DHCP IPv4 Enables IPv4 address learning via DHCP snooping. Frames shall not be forwarded until L3 address is learned. ARP frames shall be unicast to appropriate link.

- **ARP Snooping (Snoop ARP Frames…)**

ARP snooping enables the OLT to classify ARP frames into its processor FIFO. This allows the OLT to redirect the frames based on learned IPv4 destination address.
ARP Proxy

This is future functionality and will be described upon completion.

Dyn. IP Learn Table Size

Dyn. IP Learn Table Size Specifies the number of IP addresses that may be learned.

DHCP Relay Agent IP SA

Specifies the IP source address to be used for the relay agent. This is the address to be used for grAddr, inserted into DHCP frames modified by the OLT.

IPv4 Dynamic Filter Table

The learned IPv4 address table is exposed by the L3 Table tab on the GUI. If any of the checkboxes in the Mode box are checked the L3 switching shall be enabled. Otherwise L3 switching is disabled. If desired, Relay Agent IP SA may be provisioned with the same value as the IGMP Proxy.

All L3 parameters must be selected in-order for the OLT to insert DHCP Option 82 into upstream DHCP frames. Currently the OLT appends DHCP Option 82 to all L3 frames. The Relay Agent IP must be an IP on the same subnet as the DHCP server. If the L3 switching function is enabled, the Dyn. IP Learn. Table Size field should be provisioned with a non-zero value.
4.5 Alarm

The OLT alarms manager works in concert with the ONUs to provide enhanced management capabilities and complementary set of OLT specific alarms.

Features include:

- A common management interface for ONU and OLT alarms
- Soak of alarms on a per alarm ID basis
- Auditing of all alarms known to the OLT
- Setting of alarm thresholds for ONU and OLT alarms
- Autonomous alarm reporting
- Soak of alarms on a per alarm ID basis

4.5.1 Viewing Alarms

Unlike the ONU CLI the OLT CLI does not offer any ability to control the alarms manager. Fortunately the Evaluation Kit GUI exposes all of the underlying functionality.

Observing Alarm Events

Alarm may be observed remotely via the Evaluation Kit GUI, in 4 ways:

The GUI Log Window will display all autonomous alarm messages received from the OLT’s 10/100 MGMT port. If alarm auditing is enabled the GUI may also be configured to display messages received based on the audit.

The appropriate Status Icon will change to a yellow triangle indicating that an alarm is raised.

The Active Alarms panel associated with the alarmed entity will indicate the exact alarm that has been received from the host interface. This record will be maintained until an event causes the alarm to clear. Alarms will be cleared when the GUI receives a clear alarm message or another network event signifying that the alarm condition is no longer present.
The GUI Alarm Log will display a new entry, retained until the GUI is terminated. The GUI Alarm Log will indicate the way in which a particular alarm was detected, or the reason why it was cleared in the column labeled Disposition. The GUI has 3 different alarm "dispositions": autonomous, audit, and internal.
4.5.2 Enabling alarm auditing

The GUI can be configured to perform a periodic audit of the ONU and OLT alarms. By default this feature is disabled. To enable Alarm auditing follow the steps below.

Step 1. Open the Settings dialog box as illustrated below:

![Settings Dialog Box](image)

Step 2. Click on the Audit alarms, check box. The Period field is used to determine the rate at which a single ONU/OLT is audited. The GUI ensures that the time between audits remain exactly the same for all entities.

![Audit Preferences](image)

Step 3. By default the GUI does not display the reports generated by alarm audits. To enable the GUI to display alarm audits in the GUI Log Window, check the box labeled “Log all alarm audits.”

![Console Output](image)

Note that once changed, the GUI will write the new settings to a file named “default.conf” that is located in the installation directory with the GUI. The next time the GUI is executed, the new settings will be used by default. In some cases it is mandatory that the GUI be reset in order for the new settings to take effect. If the GUI is run from a read only volume such as a CDROM, it will not be able to write the “default.conf” file and will fall back to default settings. If the “default.conf” file becomes corrupt, or is deleted a new file will be generated the next time the GUI is run.
4.5.3 Setting Alarm Thresholds

Alarm thresholds may be set via the Evaluation Kit GUI. This process is the same for ONU and OLT statistics thresholds. The units for all thresholds are in events/second. To set a threshold, enter an appropriate value for the rising and falling thresholds, and then click the apply button. When the transaction completes successfully the Apply and Revert buttons will turn grey indicating that the OLT and GUI values are synchronized. Note that not all statistics are present for every entity. Refer to the host interface document for supported statistics.

When the rate meets or exceeds the rising threshold the alarm will be issued. When the rate meets or falls below the falling threshold the alarm will be cleared.
4.5.4 Enabling Alarm Soaking

Alarm soaking is controlled by selecting an alarm type to soak and entering the desired set and clear times. Un-checking enable alarm will suppress all alarm events for the alarm type specified. When the panel is first loaded or a new alarm type is selected, the GUI will query the OLT for the current values. When the values have been retrieved they will be displayed in the panel and the apply button will grey, indicating that the OLT and GUI are synchronized. After the parameters have been entered, use the Apply button to transfer them to the OLT. As before, once the GUI has successfully completed the transaction with the OLT the apply button will grey.

In the example below the OLT will only notify the Element Management Layer of an external dying gasp if the alarm condition persists for at least 5 seconds. After the alarm is cleared an additional 10 seconds must pass (without receiving any dying gasp alarms) before the OLT will notify the Element Management Layer that the dying gasp has been cleared.
4.6 ONU Data Path Configuration

The GUI may be used to configure various aspects of the ONU data path. Such as the ONU queue configuration, classification of user data traffic and filtering of user data traffic. Because these operations are very complex the user interface is divided between several panels.

4.6.1 Queue Configuration

The ONU Queue configuration panel allows the operator to change queue sizes and save configurations.

- **Entity Selection Control**

The Entity Selection Control is a graphic representation of the ONU data path. This control allows the operator to select an entity to manage by clicking on a graphical representation. An entity may be either an ONU User Port ONU Logical Link, or ONU FIFO. The EPON port is depicted as a box labeled EPON. The two User Ports are represented by boxes labeled UNI-1 and UNI-2 respectively. Depending on whether the EPON Port or a User Port is currently selected the FIFOs shown will correspond to either the upstream or
downstream data path. The convention is “from port to FIFO.” Thus selecting a port “from” which a frame is received displays the FIFOs to which the frame may be classified. Classification will be discussed in the next section. Selecting any FIFO terminating at a particular port or logical link has the effect of also selecting the related entity. In the example above link 1 has been selected.

Notice that downstream FIFOs are labeled relative to their associated link. For downstream FIFOs the GUI uses the naming convention Link.FIFO. Therefore the “full name” of the selected FIFO is 1.1.

Upstream the GUI will use the convention Port.FIFO. In the example above the full FIFO name is 1.2, indicating that the FIFO is #2 of User Port 1.

Provisioning Number of Logical Links to Register

Up to 3 Links may be registered per ONU. The number of Logical Links is determined by the Num LLID control. This control is only visible when one of the User Ports is selected.
Provisioning Number of User Ports

In practice either ONU user port may be used exclusively. However, for the purposes of the GUI only User Port 1 may be used exclusively. To select whether both User Port 1 and 2 should be used, or only user port 1, set the number of ports to 2 (both ports) or 1 (only port 1). The number of ports will not be changed if all of the FIFOs have already been allocated to user port 1, or there is insufficient FIFO space available. The Num Port field is only visible if the EPON port is selected.

Provisioning Downstream FIFOs

Step 1. Downstream FIFOs are associated with ONU user ports. The Entity Selection Control displays queues using a “From-To” convention. To add a queue to an ONU User Port, first click on the ONU EPON port (“From”) and then select any one of the ONU User Port’s FIFOs (“To”).

Step 2. Use the Num Qs control to add a second FIFO, by changing the value from 1 to 2. Notice that a second FIFO will appear in the diagram as depicted in the figure above.

Step 3. Size the FIFOs using the Queue Size Control. Notice that as the size of a given FIFO changes the picture will be updated to graphically illustrate the relative space allocated to each FIFO. To calculate the FIFO size in KBytes, multiply the provisioned size by the FIFO increment displayed on the panel. The remaining space is displayed on the panel as the Flooding Q Size. This value is automatically updated when a change is made to a User FIFO. Space that is left unallocated by the operator will automatically be assigned to the Flooding FIFO by the GUI. It is important to note that not all configurations make use of the Flooding FIFO, however all FIFOs including the Flooding FIFO must be allocated a...
minimum queue space of 2KBytes, to ensure that there is enough free space to hold a 1536 byte packet. The exact purpose of the Flooding FIFO is beyond the scope of this document.

Provisioning Upstream FIFOs

Step 1. Adding a FIFO to an ONU Logical Link is a similar procedure. First click on either of the ONU’s User Ports and then click on any of the existing FIFOs associated with the logical link to which a new FIFO is to be added.

Step 2. Use the Num Qs control to add a second FIFO, by changing the value from 1 to 2. Notice that a second FIFO will appear in the diagram as depicted in the figure above.

Step 3. Size the FIFOs using the Queue Size Control. Notice that as the size of a given FIFO changes the picture will be updated to graphically illustrate the relative space allocated to each FIFO. To calculate the FIFO size in KBytes, multiply the provisioned size by the FIFO increment displayed on the panel. There is no upstream equivalent to the Flooding FIFO, therefore all the queue space can be allocated to the User FIFOs.
Committing the Provision to ONU Firmware

Once a FIFO configuration has been created clicking the Apply button will commit the changes to the ONU. The ONU MUST be reset to complete the configuration process (this can be performed with the GUI). It should be noted that the GUI applies the new Classification scheme with the FIFO configuration; this is INCORRECT behavior that will be fixed in a future version of the GUI. Well behaved host software should apply the classification rules only after the ONU has been reset. The refresh button performs the converse function of Apply, causing the GUI state to be updated to reflect the state of the ONU.

Saving the Configuration to the Hard Disk

Once a queue configuration has been created, it can be saved to the hard disk by entering a descriptive name for the configuration into the Quick Cfg drop down box and clicking the Save button. The GUI will save both the Queue Configuration and the Classification Scheme (Filtering Rules will not be saved). These attributes are stored in a binary file located in the distribution directory. This file is called “OnuQueueCfgRepository.dat”. If desired the file may moved to a newer distribution to recover the saved configurations.

Restoring the ONU to a Previous Configuration

To restore an ONU to a previous configuration, select the configuration from the Quick Cfg drop down box and press the Apply button to transfer the stored configuration to the ONU.

Deleting a Saved Configuration

Once a configuration has been saved, it can be deleted by selecting it from the Quick Cfg drop down box or typing its name and clicking the Delete button.

Notice that the GUI prevents the user from adding more FIFOs than the ONU supports. It will also prevent the user from adding a second FIFO if there is no free space available. The free space available is clearly displayed so that it is easy to determine when there is no longer sufficient resources.
It is important to note that not all configurations make use of the Flooding FIFO, however all FIFOs including the Flooding FIFO must be allocated a minimum queue space of 2KBytes, to ensure that there is enough free space to hold a 1536 byte packet. The GUI enforces this restriction.

Picking the right FIFO size is easy. In a typical configuration the ONU is Burst Tolerant to the provisioned FIFO Size. A typical PC running Windows XP has a default TCP Window size of 17K. Therefore the FIFO should be at least 17K if it is to carry PC data. Typically 4-10K is enough for voice traffic depending on the type of service. Generally speaking 32K of Burst Tolerance is more than adequate for high throughput applications such as FTP.

The ONU MUST be reset to complete the configuration process (this can be performed with the GUI). It should be noted that the GUI applies the new Classification scheme with the FIFO configuration; this is INCORRECT behavior that will be fixed in a future version of the GUI. Well behaved host software should apply the classification rules only after the ONU has been reset.

4.6.2 Selecting Lookup Fields

The TK37XX and future ONUs support highly configurable line rate classification engines. Depending on the model, the ONU lookup engine is capable of simultaneously examining anywhere from 8-12 fields in the frame! The position and size of each field is programmed into the lookup engine prior to use in filtering and classification rules.

Depending on the device the ONU reserves a certain number of fields that cannot be changed by the user. These fields may be used to construct user provisioned classification and filtering rules, however their definitions may not be changed. All of the currently provisioned fields including those reserved by the ONU may be viewed by clicking on the Edit Fields tab.
Selecting a Classification Engine

Most ONU classification engines are configured on a per port basis. However, the TK37XX supports only upstream and downstream classification. The Port field allows the operator to choose the set of field selects to modify. Depending on the port that is chosen the provisioning may be different. For ONUs supporting only upstream and downstream classification, the EPON port designates downstream, and selecting either User Port selects upstream.

Field Select Table

The Field Select Table displays the Field Selects associated with the currently selected port, and allows field selects to be selected for modification.

Index
A number used to identify the field select.

Name
An ASCII description of the field select.

RefCount
The number of rules currently using the field select. A non-zero value means that the field select may not be modified.

LayerSel
This is the Host Interface layer select value provided for reference.

Dword
This is the Host Interface Dword value, provided for reference.
BitOffset

This is the Host Interface Bit Offset, provided for reference.

FieldWidth

This is the Host Interface Field Width, provided for reference.

Editing a Lookup Engine Field

Lookup Engine Fields may only be modified if they are not currently being used in any rule. The ONU keeps track of the fields currently being used by maintaining a reference count. This reference count is displayed in the Field Select Table. To edit a field with zero reference count follow the procedure below.

Step 1. Click on the Field Select index to be edited.

![Field Select Table](image)

Step 2. Using the Layer Sel drop down list, select an appropriate frame format. The ONU will use the frame format to qualify the field select value.

![Layer Select](image)

Step 3. Using the Edit Tool, drag a box over the field select by depressing the mouse button at the start of the field dragging it to the end of the field and then releasing the mouse button.

![Edit Tool](image)

Notice that after the field has been selected, the Name will change to reflect the selected value.

![Selected Field](image)
Applying the Configuration

The field select values may be applied to the ONU by clicking on the Apply button.

```
Apply
```

Refreshing the View

To refresh the currently displayed field select values to match the ONU click the apply button.

```
Refresh
```

Lookup Engine Fields may NOT be modified if they are in use. The ONU keeps track of the fields currently being used by maintaining a reference count. Most ONU classification engines are configured on a per port basis. However, the TK37XX supports only upstream and downstream classification. The Port field allows the operator to choose the set of field selects to modify. Depending on the port that is chosen the provisioning may be different. For ONUs supporting only upstream and downstream classification, the EPON port designates downstream, and selecting either User Port selects upstream.
An ONU classification scheme allows the operator to define a custom function to determine which packets will be forwarded to each of the ONUs configured priority FIFOs. The classification function for a given FIFO is composed of multiple independent rules. A rule consists of multiple ANDed expressions known as clauses. Each rule is used to classify traffic into a single FIFO, 1 or more rules may be used to classify traffic into the same FIFO.

Constructing an ONU Classification Rule

Step 1. Choose the Field Select. Field Selects defined by the ONU are given a descriptive label. User Defined field select are labeled User 1, User 2,.., User N. All field select labels begin with an index value. The index value correlates with the index value on the Edit Field panel.

```
Field Select: 05 - User 1
Operator: <=
Lookup Val: Never Match
```

Step 2. Choose an appropriate Operator. The operator tests the portion of the frame specified by the field select.
Step 3. Choose an appropriate Lookup Value. This is the value that will be used by the operator in the comparison. This step is only applicable to binary operators. If the operator selected is unary (such as Field Exists) the Value field will be disabled.

Step 4. Add the clause to the Rule Editor using the left arrow button. Note that the right arrow button can be used to remove a selected clause from the Rule Editor.

Step 5. Repeat steps 1-4 until the desired rule has been created.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Field</th>
<th>Value (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>==</td>
<td>04 - VLAN</td>
<td>000000000002</td>
</tr>
<tr>
<td>>=</td>
<td>05 - User 1</td>
<td>000000000004</td>
</tr>
<tr>
<td><=</td>
<td>05 - User 1</td>
<td>000000000007</td>
</tr>
</tbody>
</table>

The right arrow button is useful for correcting mistakes. Using this button we can remove a selected clause that is incorrect.

Using the Rule Grid

The Rule Grid is used to view the classification scheme and delete unwanted Classification Rules. The Rule Grid displays the rules for the port that is currently selected. Selecting a different port will reveal the rules associated with that port.

Adding a Rule to the Classification Scheme

Step 1. Set the rule precedence level. The Rule Level may be configured for 1 of 8 different precedence levels, 0 being the highest priority and 7 being the lowest. The ONU firmware installs system rules at precedence levels 0..3 and 7. It is recommended that user provisioned classification rules be provisioned in the range that the ONU does not use. If two rules (classifying traffic into different FIFOs) match the same frame, the provisioned
Rule Level will determine where the frame is classified. A classification rule with higher precedence than a filtering rule can be used to override a filtering function.

Step 2. Select the FIFO for classification. First select the ingress port (the port the classified frame arrives at), next select the egress FIFO (the FIFO that the frame will be classified into). Notice that selecting an ingress port automatically selects the set of available egress FIFOs. Black lines drawn from the FIFO to the ONU port indicate which port the forwarded frames will be sent to. Arrowhead serve to indicate the direction the data will be transported (in the figure below the direction is upstream).

ALL downstream classification rules MUST include a clause to indicate the link on which the forwarded frames arrive. The consequences of not inserting this clause are unknown, but random device failure is a possibility! The ONLY supported operator for this rule is: “==.” The Link Index is the same as N, where Base MAC + N = Link MAC.

Selecting an ingress port automatically selects the set of available egress FIFOs. Black lines drawn from the FIFO to the ONU port indicate which port the forwarded frames will be sent to. Arrowhead serve to indicate the direction the data will be transported.

If two Classification Rules or a Classification Rule and a Filtering Rule (next section) match the same frame, the action associated with the HIGHEST priority rule will be carried out (0 is highest priority). If the precedence levels MATCH the action is UNDEFINED!

Step 3. Adding the classification rule to the ONU. Once we have selected the FIFO for classification adding the rule is as simple as clicking the Add button. The GUI software will not allow the addition of identical rules.

Adding the rule will cause the Entity Selection Control to draw a connection from the
selected port to the selected FIFO for classification. The Rule Grid will also be updated to display the new rule.

Deleting a Rule

To delete a rule from the Classification Scheme, simply click anywhere in the rule to select it, and then click the delete button.

Understanding FIFO Labeling (Q)

The GUI Uses the convention <Entity ID>.<FIFO Number> to denote a particular FIFO. The Entity ID corresponds to link index upstream, and the ONU User Port upstream. If you forgot to add the Link Index clause to your downstream classification rules your ONU might disappear into an alternate universe (you have been warned). For instance the label 2.0 indicates the 0th FIFO associated with link 2.
Applying the Configuration

Once the configuration has been completed it may be easily applied to the ONU by clicking the Apply button.

The Apply All button is used to apply the configuration to all ONUs on the PON.

Once the configuration has been applied the ONU MUST be reset. This is because the GUI also applies both the Classification Scheme and the FIFO Configuration together. This is an issue in the GUI that will be fixed in a future software release. Properly designed hosts MUST NEVER apply a new Classification Scheme after changing the FIFO Configuration until after the ONU has been reset. The Reset ALL ONUs is convenient when multiple ONUs must be reset.

Refreshing the View

The Refresh button is used to refresh the Classification Scheme with the values currently stored in the ONU.

Once the configuration has been applied the ONU MUST be reset. This is because the GUI also applies both the Classification Scheme and the FIFO Configuration together. This is an issue in the GUI that will be fixed in a future software release. Properly designed hosts MUST NEVER apply a new Classification Scheme after changing the FIFO Configuration until AFTER the ONU has been reset. The Reset ALL ONUs is convenient when multiple ONUs must be reset.
Filtering Rules and Classification Rules work in apposing directions to achieve the same ultimate goal: control the user’s access to the PON. In the previous section we learned that Classification Rules are used to allow certain classes of traffic into the ONU data path. As you might imagine, Filtering Rules serve the opposite purpose, blocking certain classes of traffic from entering an ONU Port. Filtering rules use the same hardware resources, Field Selects, Operators, and Precedence values as Classification Rules and are constructed in a similar fashion. A Classification Rule can override a Filtering Rule by setting its precedence higher.

- **Selecting the Port for Filtering**

 The Port to Filter is selected using the Port drop down box.

- **Using the Rule Grid**

 The Filtering Panel Rule Grid is almost identical to the Classification Panel Rule Grid, except that the Q column is absent, as it is not required.
Constructing an ONU Filtering Rule

Step 1. Choose the Field Select. Field Selects defined by the ONU are given a descriptive label. User Defined field selects are labeled User 1, User 2,.., User N. All field select labels begin with an index value. The index value correlates with the index value on the Edit Field panel.

Step 2. Choose an appropriate Operator. The operator tests the portion of the frame specified by the field select.

Step 3. Choose an appropriate Lookup Value. This is the value that will be used by the operator in the comparison. This step is only applicable to binary operators. If the operator selected is unary (such as Field Exists) the Value field will be disabled.

Step 4. Add the clause to the Rule Editor using the left arrow button. Note that the right arrow button can be used to remove a selected clause from the Rule Editor.

Step 5. Repeat steps 1-4 until the desired rule has been created.
Adding a Filtering Rule

Step 1. Select the Port to Filter.

Port: [Dropdown]

Step 2. Set the rule precedence level. The Rule Level may be configured for 1 of 8 different precedence levels, 0 being the highest priority and 7 being the lowest. The ONU firmware installs system rules at precedence levels 0..3 and 7. It is recommended that user provisioned classification rules be provisioned in the range that the ONU does not use. If two rules (classifying traffic into different FIFOs) match the same frame, the provisioned Rule Level will determine where the frame is classified. A classification rule with higher precedence than a filtering rule can be used to override a filtering function.

Rule Level: [Input]

Step 3. Add the filtering rule to the ONU by clicking the Add button.

Add

Unlike the Classification panel, adding a filtering rule will cause the ONU to be updated without an additional apply action.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Field Select</th>
<th>Operator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>04 - VLAN</td>
<td>==</td>
<td>0x00000000000002</td>
</tr>
<tr>
<td>05 - User</td>
<td><=</td>
<td>0x0000000007</td>
<td></td>
</tr>
</tbody>
</table>

The TK37XX ONU support 8 clauses per rule. It is important to consider the capabilities and limitations of each chipset when designing filtering schemes.
Deleting a Filtering Rule

Once a filtering rule has been added, the rule may be deleted by selecting it from the Rule Grid and clicking the Delete button.

Once the rule has been successfully deleted, it will be removed from the Rule Grid.
4.7 IGMP

EPON chipsets include an RFC 2236 compliant IGMP solution that leverages the power of the underlying hardware classifiers, shapers and priority FIFOs to deliver high quality IP multicast content over EPON. From a functional perspective the feature set may be roughly divided into 4 broad classes of functionality:

1. Control over IP multicast data traffic at the network and customer edge.
2. Burst protection for customer premise equipment (CPE.)
3. Scheduling of IP multicast data traffic.
4. Aggregation of reports sent by CPE, greatly limit the burden placed on RFC 2236 queriers such as a video server residing in the CO.

These 4 primary functions are distributed between the OLT and the several ONUs, based on the design principle that functionality should be implemented, as much as possible, at the network’s edges. Thus preserving the bandwidth of the PON and taking maximum advantage of the combined resources of the several ONUs.

4.7.1 Brief Overview of Proxy Concepts

On the customer edge the OLT acts as an RFC 2236 querier. Hosts connected to one of the ONUs UNI ports perceive the queries sent by the OLT as originating from a media server behind the OLT. On the network edge the OLT behaves as an RFC 2236 “non-querier,” aggregating the reports sent by the several connected hosts, and making the system appear to an attached video server or other device connected to the OLT’s NNI as if there existed only a single STB behind the OLT.

■ Behavior of ONU

By default the ONU shall block all IGMP multicast data traffic preserving the bandwidth of the user network. When an STB or other host attached to one of the ONU’s UNI ports requests to join a multicast group, the query is snooped by the ONU’s CPU before being forwarded to the EPON port without modification.

Report Received from UNI

If no host is joined to the group on the attached interface, the ONU will install a new rule to forward the group to the provisioned IGMP multicast data FIFO.

Leave Received from UNI

If the LMQC variable is set to 0 (“fast leave”) and at least one host is joined to the group on the attached interface, the ONU will remove the forwarding rule for the associated group.
General Query Received from EPON

If any groups are present on either of the ONUs UNI ports, the ONU will start a count down timer that is equal to: \([\text{provisioned robustness count}] \times \text{[Max Response Time specified in query]}\). If a report is not received within this interval, for any group joined on either of the ONU’s UNI ports, the group will be removed from the ONU’s multicast forwarding table.

Group Specific Query Received from EPON

If any groups are present on either of the ONUs UNI ports, the ONU will start a count down timer that is equal to: \([\text{provisioned GSQC}] \times \text{[Max Response Time specified in query]}\). If a report is not received within this interval, for the specified group joined on either of the ONU’s UNI ports, the group will be removed from the ONU’s multicast forwarding table.

- Behavior of OLT

By default the OLT shall block all IGMP multicast data traffic preserving the bandwidth of the PON and user network. When an STB or other host attached to one of the several ONU’s UNI ports requests to join a multicast group, the query is snooped by the OLT’s CPU, and conditionally forwarded upstream.

Report Received from Logical Link

If no host is joined to the group on the attached interface, the OLT will install a new rule to forward the group to one of the several IGMP multicast data FIFOs. The OLT will pick the FIFO with least groups joined.

- Group Insertion Process:

Leave Received from Logical Link

The OLT will issue LMQC GSQs, spaced by LMQI until one of the following two events occurs (whichever occurs first).

1. 1 or more reports are received upstream for the group specified in the leave message.
2. No report is received after LMQI units from the time that the final LMQ was issued.

In case (1), the load balancing algorithm will be applied as described above. In case (2) the group will be removed from the forwarding table, and the OLT will transmit a leave message, with the provisioned source IPv4 Address, from the OLT’s NNI.
Group Removal Process:

General Query Issued

The OLT will periodically issue General Queries every Query Interval units. The use of the General Query in IGMPv2 is very different from the way it was used in IGMPv1. In IGMPv2 the General Query is used for failure detection only. In IGMPv1 the General Query was the only mechanism used to detect a leave. Because failures are extremely rare in modern networks the Query Interval may be provisioned to a very large value. Query Response Timeout units after the OLT issues the General Query the OLT will decrement the robustness variable for each group joined for which the OLT has not received a report. When the robustness for a particular group is 0, the OLT will assume that an implicit leave has occurred and start the same process as described above. Since IGMPv2 has a different mechanism than IGMPv1 to guarantee robustness - the Group Specific Query Count - it is probably not necessary to provision the Robustness Count to a large value. The value recommend by the standard for backwards compatibility with IGMPv1 is 2, however, if the target system will only have IGMPv2 capable clients, a robustness count of 1, is probably a better choice.

The protocol description assumes that IGMP snooping and proxy are enabled. If these functions are disabled, IGMP multicast data packets will be forwarded based on the Host provisioned classification scheme and bridging mode(s).

If faster leave operation is desired, the GSQC may be set to 1, and the Last Member Query Max Response Time provisioned to a smaller value than the default.

The ONU Snooping and OLT Proxy functions MUST be configured identically. Otherwise multicast traffic will NOT be forwarded as expected.

The number of IGMP multicast data FIFOs used MUST NOT be changed when the OLT PON Plant is enabled.
4.7.2 GUI Authentication Function

The authentication function in the GUI requires the creation of an external database of authentication secrets. The external database is to be a plain ASCII text file named “Prov.db”. The first line in the database contains the number of authentication records. Each record consists of an LLID MAC Address, end-line, authentication secret, and end-line.

Example File:

Three Boolean attributes found in the Utilities/System Settings panel control the authentication behavior:

Authenticate Links:

If checked the GUI will use its database of authentication secrets to authenticate each link when the GUI is opened or on autonomous link discovery. Discovered links that are not authenticated will appear with a grey icon. Links that do not exist in the authentication database will be treated as unauthenticated links.

- **Enable SLAs on discovery, if authenticated:**

 If checked and Authenticate Links is also checked the SLAs will be enabled only if the authentication succeeds. Otherwise, if checked, SLAs will be enabled unconditionally. This is useful for strict boot mode.

- **Enable OLT after boot:**

 If checked this attribute will cause the OLT to be enabled after boot up in order to facilitate the strict boot mode.

If the Prov.db file is not present, an authentication database with no records is assumed.
4.8 Software Upgrade

4.8.1 OLT software upgrade

Click relevant OLT on the following management chart, then the scheme items will come forth as following:

Click button "Upgrade OLT" in last item "INFO", as following chart:
You can also check the version by the “Current Load Version” tag, it will show the relevant information of OLT version.

Select the objective upgrade file, and click “Open” for upgrading.

After Clicking “open” button, the OLT will strat to upgrade the software. Remember to reboot the OLT to apply the changes after upgrading the software.
4.8.2 ONU Upgrade

Click relevant ONU on the following management chart, then the scheme items will come forth as following:

Click button "Upgrade ONU" in last item "INFO", as following chart:
You can also check the version by the “Current Load Version” tag, it will show the relevant information of OLT version.

<table>
<thead>
<tr>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Code</td>
<td>0x140</td>
</tr>
<tr>
<td>Personality</td>
<td>0x2</td>
</tr>
<tr>
<td>App1</td>
<td>0x220</td>
</tr>
<tr>
<td>OAM</td>
<td>0x200</td>
</tr>
</tbody>
</table>

Select the objective upgrade file, as following:

After Clicking “open” button, the OLT will start to upgrade the software. Remember to reboot the OLT to apply the changes after upgrading the software.
EC Declaration of Conformity

For the following equipment:

*Type of Product : GEPON OLT
*Model Number : EPL-1000

* Produced by:
Manufacturer’s Name: Planet Technology Corp.
Manufacturer’s Address: 11F, No. 96, Min Chuan. Road, Hsin Tien, Taipei, Taiwan, R.O.C.

For the evaluation regarding the Electromagnetic Compatibility, the following standards were applied:

EN 60950-1 (2006)
EN 55022 (2006)
EN 61000-3-2 (2006)
EN 61000-4-2 (2001)
EN 61000-4-4 (A1: 2001)
EN 61000-4-5 (A1: 2001)
EN 61000-4-6 (A1: 2001)
EN 61000-4-8 (A1: 2001)
EN 61000-4-11 (A1: 2001)

Responsible for marking this declaration if the:

☒ Manufacturer
☐ Authorized representative established within the EU

Authorized representative established within the EU (if applicable):

Company Name: Planet Technology Corp.
Company Address: 11F, No.96, Min Chuan Road, Hsin Tien, Taipei, Taiwan, R.O.C

Person responsible for making this declaration

Name, Surname: Allen Huang
Position / Title: Product Manager

Taiwan
Place
2nd Sep., 2009
Date

Legal Signature